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Abstract-Expressions for the elastic strain energies due to dislocation arrays near bimaterial
interface or near the free surface of a semi-infinite body are derived. Arrays with periodic straight
dislocations of edge, screw and combined type are considered. Expressions for the complete stress
distribution and dislocation forces are also presented. © 1997 Elsevier Science Ltd. All rights
reserved.

I. INTRODUCTION

Recently, a significant amount of research has been devoted to the evaluation of the elastic
strain energy produced by dislocation arrays in various configurations relative to the free
surface in a semi-infinite body or an interface in a multi-layer material (van der Merwe and
Jesser, 1988; Willis et al., 1990; 1991; Hirth and Feng, 1990; Freund; 1993, Gosling and
Willis, 1994). The research was mainly motivated by the significance of energy expressions
in the mechanics of semiconductor materials and the strain relaxation processes in thin
films (Matthews, 1979; Jesser and van der Merwe, 1989; Freund, 1993). A study of the
elastic strain energy and the stress fields produced by periodic dislocation arrays is also of
importance in grain boundary modeling, analysis of polygonalization, persistent slip bands
and dislocation cell structures (Nakahara et al., 1972; Rey and Saada, 1975; Chou and
Lin, 1975; Chou et al., 1975; Hirth et al., 1979; Saada, 1979; Hirth and Lothe, 1982;
Lubarda et al., 1993; Saada and Bouchand, 1993; Lubarda and Kouris, 1996a,b).

In this paper expressions for the elastic strain energy are derived due to infinite
dislocation arrays parallel to the interface of two joined semi-infinite elastic bodies with
different elastic constants. Section 2 is an analysis of an isolated dislocation near the
bimaterial interface. In Section 3 the arrays with periodically distributed dislocations are
considered. The arrays consist of screw dislocations, or edge dislocations whose Burgers
vectors are either parallel or normal to the interface. A general dislocation array, consisting
of mixed-type straight dislocations, is considered in Section 4. Expressions for the energy
and dislocation forces are derived in each case, Results for the arrays near the free surface
of a semi-infinite homogeneous body are also given. In the derivation process, a knowledge
of the stress distribution produced by dislocations is needed. Expressions for all stress
components produced by a single dislocation near the bimaterial interface are consequently
listed in Appendix A. Appendix B presents the corresponding formulas for infinite dis­
location arrays, which are obtained by appropriate summation from the formulas listed in
Appendix A. In Appendix C we show that various energy contributions depend on a
selected cut surface along which displacement discontinuity is imposed. Finally, in Appendix
D we present an additional procedure to derive considered energy expressions.

2. SINGLE DISLOCATION NEAR A BIMATERIAL INTERFACE

Consider a general straight dislocation at a distance h from the interface of two joined
isotropic elastic half spaces. The dislocation Burgers vector has the edge components, b,
and by, and the screw component, bz ' Let J1.1 and VI be the shear modulus and Poisson ratio
of material (1), and J1.2 and V2 of material (2). A complete adherence between two materials
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is assumed, so that displacements and tractions are continuous across the interface. The
stress field for this problem was originally derived by Head (1953a,b), and further studied
by Pastur et al. (1963), Dundurs (1969), and others. The relevant results for the purposes
of this paper are listed in Appendix A. The following material parameters are conveniently
utilized

(I)

where IX and f3 are the non-dimensional Dundurs parameters, defined by

(2)

If the two materials are identical, IX = f3 = 0, k2 = k4 = 0, and k 3 = 1. Also,
k 3 -1 = (IX+ f32)/(I- f32), and 1+k2= (1- f3)k3• The constants k2 and k 3 are related to
constants Q and M used by Pastur et al. (1963), and Chou and Lin (1975) through the
relations k2 = - Q and k 3 = - M/ f3.

Since the elastic strain energy in the system does not depend on the vertical position
of dislocation along the line x = h, the total force on a dislocation per unit length, exerted
by the interface, is in the horizontal direction and given by Fx = bx(J~~(h, 0) +by(J~I)(h, 0) +bz

(J~;) (h, 0). The divergent part of the stress at the core center of the dislocation is excluded
in this expression. For example, for a pure edge dislocation with the Burgers vector normal
to the interface, the (glide) force is Fx = k] (k3 -1 )b;/2h, originally derived by Pastur et al.
(1963). The nature of this force (attractive or repulsive toward the interface) depends on
the combination of material properties IX and f3, and is discussed by Dundurs (1969). The
tractions over any plane parallel to the interface have a non-vanishing resultant f31tk]k3bx ,

parallel to the interface. This was originally observed by Dundurs and Sendeckyj (1965),
and later discussed by Comninou (1977), Barnett and Lothe (1974), Lothe (1992), and
others.

The elastic strain energy per unit dislocation length within a large cylinder of radius
R » h around the dislocation, excluding its core, can be conveniently expressed by using
the divergence theorem. For a pure edge dislocation with the Burgers vector bxo the energy
is

(3)

where E R is the contribution from the tractions at the remote contour of radius R, and Ep

from the tractions at the dislocation core surface of radius p. Substitution of expression
(A.11) from Appendix A for the shear stress (J~~ (x, 0) gives

(4)

For a sufficiently small core radius (p « h), the energy Ep can be calculated by replacing
the dislocation core with a cylindrical hole, whose surface is subjected to tractions of an
isolated dislocation in an infinite homogeneous medium, along with the corresponding
displacements. When displacement discontinuity is imposed along the horizontal cut, this
gives Ep = k j b;(I-2vj)/8(1-v]). The energy contribution ER can be conveniently cal­
culated by using the stress and displacement fields of an interfacial dislocation, since the
distance h between the dislocation and interface is not observed at a far remote contour R.
The relevant traction and displacement components for the interface dislocation can be
found in Dundurs and Mura (1964), which upon integration gives
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(5)

In the case of a uniform infinite medium (f3 = 0, k 3 = 1), E R reduces to Ep , so that the core
and remote contour contributions in eqn (4) cancel each other. If a dislocation is near the
free surface of a semi-infinite body, the energy contribution from the remote contour
vanishes, because the stresses decrease as l/r2 far away from the dislocation. It is pointed
out that, when using a divergence theorem to calculate elastic strain energy for a dislocation
in an infinite bimaterial or in a semi-infinite homogeneous body, the individual energy
contributions from the cut surface, remote contour and the core surface in general depend
on the selected cut along which displacement discontinuity is imposed. However, the total
elastic strain energy is independent of such a selection, since neither stress nor strain depend
on the cut. This is discussed in more detail in Appendix C of this paper.

The elastic strain energy per unit length of a screw dislocation within a large cylinder
of radius R » h around the dislocation is

-! f,R (1)E - 2 bz (1zy (x, 0) dx.
h+p

(6)

There is no contribution from the tractions at the remote contour of radius R, since for
an interface screw dislocation it follows that (1zr = °(hence, no work is done on the Uz

displacement). Similarly, there is no contribution from the tractions on the core surface for
a screw dislocation in an infinite homogeneous body. In view of eqn (AA), eqn (6) therefore
gives

(7)

If k4 = 1, the first term on the right-hand side of eqn (7) is equal to zero, and the strain
energy for a screw dislocation near the free surface of a semi-infinite body is obtained.

Since there is no interaction term between the edge and screw dislocation contributions,
the elastic strain energy of a general straight dislocation is the sum of the individual energy
contributions. This gives

(8)

The corresponding dislocation force, the negative gradient of E with respect to h, is

(9)

In eqn (8), ER and Ep are the contributions from the tractions at the remote contour
and the dislocation core surface. When displacement discontinuity is imposed along the
horizontal cut, the energy contribution from the core surface is

(10)

The elastic strain energy for a dislocation near the free surface of a semi-infinite body is



1056 V. A. Lubarda

y
y

y y
y

0
y

h ~
~

X

Y
Y
Y
Y
Y
Y

@ Y CD
Fig. 1. A general dislocation array of uniform dislocation spacing p, at a distance h from the

bimaterial interface.

obtained by inserting into eqn (8) k2 = -1, k 3 = 0, k4 = 1, ER = 0, and by using eqn (10)
for the core contribution Ep • The result is

(11)

in agreement with Freund (1987, 1990).

3. DISLOCATION ARRAY NEAR A BIMATERIAL INTERFACE

Consider an infinitely long dislocation array at a distance h from the interface of two
joined materials (Fig. 1). The array consists of identical, uniformly spaced dislocations of
spacing p. The Burgers vectors of dislocations consist of the edge and screw components.
The stresses at an arbitrary point are obtained by adding the contributions from all
dislocations in the array. The summation procedure is rather lengthy. Chou and Lin (1975)
gave implicit expressions for the stresses in material (1), in the case of edge dislocations
with Burgers vectors normal to the interface. Stresses for other orientations of dislocations
have apparently not been reported in the literature. We have consequently performed
requisite summations and derived explicit expressions for all stress components in both
materials, and for all three types of dislocation arrays. The results are listed in Appendix
B. In these expressions the non-dimensional variables are used: ~ = xlp, f/ = yip, ho = hlp,
and 8 = 21t(~-ho), qJ = 21t(~+ho), '" = 21tf/. The abbreviations: A = chqJ-cos"',
B = chqJ cos'" - 1, C = ch8 -cos'" and D = ch8 cos'" -1 are also employed. These results
were used in this section to derive expressions for the elastic strain energy associated with
the arrays.

3.1. Screw dislocation array
Consider an infinitely long array of screw dislocations. The stress components are

periodic functions of y, with a period of p, so that along the planes y = ±np, n being an
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integer, the shear stresses O"~~) and O"~~) are equal to zero. From eqns (B.2) and (BA) of
Appendix B it further follows that

(I) _ J.l1bz( ~ _ f)O"zy (x,O) - 2p coth 2 k4coth 2

The force on each dislocation in the array is Fx = bzO"g) (h, 0), which gives

(12)

(13)

(14)

where CPo = 2nho· Ifdislocation spacingp is much greater than a distance h between the array
and the interface (CPo -+ 0), eqn (14) reduces to the force on an isolated screw dislocation near
the interface. On the other hand, ifh is much greater than p, the dislocation force approaches
the constant value of -k4(J.l lb;/2p).

Since

~ih (I) _J.llbz l-cosljJ
h O"zy (x,y)dx - 4 h In h2 ,I,'
one CPo - cos 'I'

the average stress O"g) within the layer is

1

fPI2 ih bo (I) J.l1 zO"zy = h O"zy (x,y) dxdy = - (1 +k4)-2-·
'P -p12 0 P

(15)

(16)

If a dislocation array is modeled by a continuous distribution of infinitesimal dislocations
with density lip and the specific Burgers vector of magnitude bzlp, the stresses are obtained
by an appropriate integration. The result is the zero stress component O"zx in both materials,
and a discontinuous distribution of the stress component O"zp defined by

0"(1) = {-(1+k4)J.llbzI2P, x < h
zy (I-k4)J.l 1bzI2p, x> h

(17)

(18)

For x < 0 and x > h, the values of the shear stresses (17) and (18) are the far-field stresses
of the array with a discrete dislocation distribution. Also, the value of the shear stress (17)
for x < h is the average stress O"~y in the layer for an array with discrete dislocation
distribution, given by eqn (16).

The strain energy per unit dislocation length within a horizontal strip of large length
2R and width p, associated with introduction of the dislocation array in an initial con­
figuration under uniform stress O"~v, can be written as

(19)

where Eo is the strain energy in the initial configuration, and
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(20)

There is no coefficient of one-half in front of the second term on the right-hand side of eqn
(19), since the stress O"~y is considered to be already applied before the subsequent intro­
duction of slip discontinuity bz along the cut x ~ h. Substitution of eqn (12) into eqn (20),
followed by integration yields

(21)

where ~ = 1T.R/p, and Po = 1T.p/p. Thus, the strain energy is

(22)

If the array is near the free surface of a semi-infinite body, it follows that O"~y = - f11bz/P,
Eo = ~f11b; /21T., and the strain energy becomes

(23)

For a sufficiently small core radius, shpo in eqn (23) can be replaced with Po.

3.2. Edge dislocation array with the Burgers vector normal to the interface
Consider an infinitely long dislocation array at a distance h from the interface of two

joined materials (Fig. 2). The array consists of identical, uniformly spaced edge dislocations
with their Burgers vectors normal to the interface. Such an array is commonly referred to
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Fig. 2. A dislocation wall of spacing p at a distance h from the bimaterial interface. The Burgers
vector of each dislocation is normal to the interface.
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Fig. 3. (a) The shear stress variation along the line normal to the interface passing exactly in­
between two dislocations from the wall in Fig. 2. The curves correspond to three different values of
the distance between the wall and interface. The far-field shear stress exerted by the wall is equal to
(1~y = {Jrck,k3b x/p. (b) The glide force on an arbitrary dislocation from the wall, as a function of
distance from the interface. The dashed curve shows the glide force when the far-field value Fxo =

(1~ybx is subtracted.

as a dislocation wall. Along the slip plane of any dislocation in the wall, the normal stresses
ax and ayare equal to zero. From eqns (B.7) and (RIO), the corresponding shear stress is

(24)

a(2)(x,0) = rck l k 3 bx 8+{3(cp-sh8),
X} P 2 sh2(8/2)

(25)

where c(cp) = CPo(cp - CPo) coth(cp/2). Figure 3(a) shows the variation of this shear stress in
the case ofan aluminum/copper bimaterial, for which III = 26 GPa, VI = 0.33, 112 = 45 GPa,
V2 = 0.35. Substitution of these values into eqn (2) yields the following values of the
Dundurs parameters: (X = 0.28 and {3 = 0.08, so from eqn (I), k2 = 0.185 and k 3 = 1.288.
The plots correspond to the walls at distance h = 0.25p, 0.5p and p from the interface. The
non-vanishing far-field shear stress a~y = {3rck l k 3bx/p is quickly approached away from the
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wall. The significance of this far-field stress in connection with a grain boundary modeling
and Frank's formula has been discussed by Chou and Lin (1975), and Hirth et al. (1979).
The latter authors suggested to subtract the far-field shear stress in order to simulate the
grain boundary in an unloaded bicrystal of finite size. With the increase of h, the non­
vanishing shear stress pattern in a narrow region around the wall translates with the wall,
preserving its shape and magnitude. Figure 3(b) shows the glide force on an arbitrary
dislocation from the wall, obtained according to eqn (27) below, as a function of a distance
h from the interface. When the far-field value is subtracted (dashed curve), the glide force
quickly decreases to essentially a zero value, at a distance h from the interface of the order
of dislocation spacing p. Beyond this distance, the wall is in an approximate equilibrium
configuration (Hirth et aI., 1979), without further observable tendency to move away from
the interface. See also Gutkin et al. (1989), and Gutkin and Romanov (1994), who studied
the location of this stand-off position of misfit dislocations.

If a dislocation wall with uniformly spaced edge dislocations of spacing p is modeled
by a continuous distribution of infinitesimal dislocations with density lip, the stresses are
obtained by an appropriate integration. The result is a uniform stress distribution in both
materials

(26)

This also represents the far field stresses (at x ---+ ± CIJ) of the previously considered discrete
wall.

The glide force on each dislocation from the wall is Fx = bx(J~~ (h, 0). The divergent
part of the shear stress (J~~(h, 0), due to the 91C term at x = h, has been excluded. This
gives

(27)

Ifdislocation spacingp is much greater than a distance h between the wall and the interface,
eqn (27) reduces to the glide force of a single dislocation near the interface. On the other
hand, if h is much greater than p, the glide force on a dislocation in the wall approaches
the constant value of pnk1k 3b;/p. This is equal to zero only if the two materials are identical,
or incompressible (since then p= 0), or if the wall is located in a semi-infinite body with
the traction free boundary x = 0 (since then rx = - I and k3 = 0).

The strain energy per unit dislocation length within a horizontal strip of large length
2R and width p, excluding the dislocation core, associated with introduction of the dis­
location wall in an initial configuration under uniform stress (J~y, can be written as

(28)

Here, Ep is the energy associated with tractions applied on a core surface of radius p, Eo is
the strain energy in the initial configuration, and

(29)

There is no coefficient of one half in front of the second term on the right-hand side of eqn
(28), since the stress (J~y was considered already applied before the subsequent introduction
of slip discontinuity bx along the cut x ~ h. Recall that the stress (J~y is the far field shear
stress and also the average stress (Jxy in the layer between the array and the interface.
Substitution of eqn (24) into eqn (29) and integration yields
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Fig. 4. Dislocation array of spacing p at a distance h from the bimaterial interface. The Burgers
vector of each dislocation is parallel to the interface.
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Again, for a sufficiently small core radius (relative to hand p), Ep can be calculated by
replacing the dislocation core with a cylindrical hole, whose surface is subjected to tractions
of an isolated dislocation in an infinite homogeneous body, along with the corresponding
displacements. Hence, Ep in eqn (28) is independent ofh, and equal to klb~(l-2vl)/8(l-vl)'

If the wall is near the free surface in a semi-infinite body (k2 = -1,k3 = 0), the far­
field shear stress is equal to zero, and Eo = O. Hence, neglecting the energy of the ledges left
on the free surface, the energy is E = E* - Ep , with the corresponding simplifications in the
expression (30) due to k2 = - I and k3 = O. The glide force on a dislocation is in this case
Fx = - (nklb~/p)CfJ~ ch CfJo/sh3 CfJo-

3.3. Dislocation array with the Burgers vector parallel to the interface
The stress components for a dislocation array with the dislocation Burgers vector

parallel to the interface (Fig. 4) are given by eqns (B.14)-(B.19) of Appendix B. Along the
line y = 0, or any parallel line passing through the dislocation in the array, the shear stress
(Jxy is equal to zero, while the normal stress (Jy becomes

(31)

(32)



6.0

u.
ll

_ 4.0

u."

2.0

,
,,,,

,
,

,

hlp

Fig. 5. (a) The normal stress variation along the line normal to the interface passing exactly in
between two dislocations from the array in Fig. 4. The far-field value of (1, at x ..... 00 is
(110 = 1tk,kJb,(2 - fJ)jp· (b) The climb force on an arbitrary dislocation from the array, as a function
of a distance from the interface. The dashed curve shows the climb force when the far-field value

Fxo =(1tk,b;jp)[kJ(2-fJ)-2] is subtracted.

Figure 5(a) shows the variation ofthe normal stress (1y along the line y = 0 for the previously
considered aluminum/copper bimaterial. The variation is shown for the arrays at distance
h = O.25p, O.5p and p from the interface. For h greater than p, the stress is approximately
constant in the region between the array and interface. The stress quickly sets in to a
constant, but different values in the rest of material (1) and material (2). Figure 5(b) shows
the change of the climb force as a function of a distance between the array and the interface,
determined by eqn (35) below.

If a dislocation array is modeled by a continuous distribution of infinitesimal dislo­
cations, the result is a uniform distribution of stress (1x = (1~ = {3nk1k 3by/p and (1xy = 0
throughout both materials, and a discontinuous distribution of the stress component (1y

defined by

(1~I) = {k3 (2-{3)nk t by/p, x> h

[k 3 (2-{3)-4]nk 1by/p, x < h
(33)

(34)
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The stress between the array and interface is O"~ = [k3(2 - fJ) -4]nktby/p. If the array is
parallel to the free surface of a semi-infinite homogeneous body (k3 = 0), there is a constant
stress O"y of magnitude 4nk tby/p between the array and the free surface, and a zero stress
behind the array. Herring (1951) suggested that a dislocation array just beneath the free
surface will spontaneously form if the lowering of the surface energy caused by the array is
greater than the strain energy of the array itself. For most materials this condition is not
satisfied, although for some materials it could be, particularly for those with a compressive
rather than tensile surface stress. Hartley (1969) has also discussed the nature of the stress
field produced by the array in connection with a tendency for the segregation of impurities
between the array and the free surface. Freund et al. (1993) studied the equilibrium surface
roughness and mass rearrangement induced by a non-uniform stress field due to dislocations
just below the surface.

The climb force on a dislocation from the array is found to be

(35)

If the dislocation spacing P is much greater than the distance h between the array and the
interface, eqn (35) gives the climb force for a single dislocation near the interface. On the
other hand, if h is much greater than P, the climb force approaches the constant value

(36)

This force is equal to zero only if two materials are identical, since then fJ = 0, and k3 = I.
Expression for the climb force (36) can also be obtained from eqn (33) by using the mean
value of the stress O"~]) at x = h±O.

The strain energy associated with introduction of the dislocation array in an initial
configuration under uniform normal stress O"~, and O"~, can be written as

(37)

where

(38)

The stress O"~ appears in the above energy expressions due to the fact that, when a dislocation
array moves from a distance h to a distance R » h from the interface, the stress O"~I) left
behind the array is O"~. Substitution of eqn (31) into (38) and integration gives

I Z { sh <Po ( <p~ )E*=-2 ktby In-h--pocothPo-kz <Pocoth<po-
s Po 2shz <Po

If the array is near the free surface of a semi-infinite body (kz = - I, k 3 = 0), it follows that
O"~ = -4nk1b)p, and Eo = 2k]b;Ro. Hence, the total strain energy per unit dislocation
length within a strip of width p is

I z( sh<po <p~ )E = -2 k tby In-
h
- - Po coth Po + <Po coth <Po - - Ep •

. s Po 2shz <Po
(40)
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4. THE ENERGY OF A GENERAL STRAIGHT DISLOCATION ARRAY

Results for a general dislocation array, whose dislocations have the Burgers vectors
with the edge and screw components, are now derived. The strain energy associated with
the introduction of a dislocation array in an initial configuration under uniform stress
distribution (1~, (1~y and (1~Y' is

(41)

where

E* = ~ r
R

{bA(1~~)(x, 0) - (1~y] +by[(1;.I) (x, 0) - (1~) +bz[(1~~) (x, 0) - (1~y]) dx. (42)
Jh+P

Recall that (1~y, (1~ and (1~y represent the average stresses in the layer between the dislocation
array and the interface, and are given by (1~ = nk1by[k)(2 - fJ) - 4]/p, (1~y = fJnk1k)bx/p, and
(1~y = -nk1bz(1- v\)(l + k4)/p. Combining results from the previous subsections, it now
easily follows that

(43)

The force on a dislocation is obtained from eqn (43) as a negative gradient with respect to
h, which gives

nk1 {2 2[ 2CfJo ]Fx = -pcothCfJo (bx+by) l-k)+k2sh2CfJo (1-CfJocothCfJo)

+ (b~ -b;)k2( 1- s~~;J+(1-Vl)b;k4}' (44)

If the array is near the free surface of a semi-infinite body, the strain energy of the initial
configuration is Eo = k 1[2b; + (l-v1)b;]Ro. With the core contribution Ep given by eqn
(10), the energy expression (43) simplifies to

k] {2 2[ sh CfJo CfJ~ 1 ]
E = -2 (bx+by) In-h- - 2 + 4(1 )

s Po 2sh CfJo -VI

(45)

For a sufficiently small core radius shpo can be replaced by Po. Equation (45) is in agreement
with eqn (17) of Willis et al. (1991). For comparison, their energy Ed is related to our E by
E = Ed-Ep-h«1~by+(1~ybz)/2. If h «P, eqn (45) reduces to eqn (11) for an isolated dis­
location near the free surface. If h » p, eqn (45) gives E = [2b; + (1- v1)b;]nk1h/p, which
is proportional to h. This is so because for h » p the stress field in the layer becomes
essentially constant «1y = (1~ = -4nk1by/p, and (1zy = (1~y = - J.l.1bz/p) , as if the array consists
of continuously distributed infinitesimal dislocations.
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5. CONCLUDING REMARKS

The main results of this paper are the energy expressions (43)-(45), and the formulas
for the complete stress distribution in a bimaterial due to dislocation arrays parallel to
bimaterial interface. Expression (43) represents the elastic strain energy per unit dislocation
length within a considered segment of an infinite bimaterial body, produced by periodic
dislocation array parallel to a bimaterial interface. Expression (44) gives the corresponding
force exerted on each dislocation in the array. Expression (45) is a special case of eqn (43),
and gives the elastic strain energy produced by dislocation array near the free surface of a
semi-infinite homogeneous body. This expression is important in the analysis of strain
relaxation processes in thin films bonded to their substrates (Lubarda, 1996). Expressions
for the complete stress distribution are listed in Appendix B.
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APPENDIX A

A.I. Screw dislocation
The only non-vanishing displacement component for a screw dislocation with the Burgers vector b" at a

distance h from a bimaterial interface, is

(AI)

(A2)

The constant k. is defined in eqn (I), and the angles 8, and 82 are shown in Fig. AI. The associated stresses are

y

Fig. AI. Dislocation at a distance h from the bimaterial interface.
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O";~) = - JJ~b'(L -k. L)
1l d rl

(2) = JJ2 b, (I +k )x-h
O",y 2 • .

1t rf
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(A3)

(A4)

(A5)

(A6)

The polar coordinates shown in Fig. Al are employed, so that in terms of the Cartesian (x,y) coordinates
d = (X-h)2+ y2, rl = (x+W+ I. tan 8, = y/(x-h), and tan 82 = y/(x+h).

A.2. Edge dislocation with the Burgers vector b,
The Airy stress function for the stress field due to edge dislocation with the Burgers vector bx is (Dundurs,

1969)

The corresponding stresses are

(I) _ k b {y[3(X_h)2+ y 2] k y[3(X+W+y2] 4k h 3(x+h)2_y 2 Pk L}
o"x - - I x + 2 + 2 xy + J

r1 r~ r~ r~

(A7)

(A8)

(A9)

(I) = k b {y[(X- W - y2 ] +k Y[(X+h)2_ y 2] 2(x+W-3x(x+h)2+2(x+h)y2+ xy Pk y}
O"y I x 2 4k2hy + 3 -

r1 ~ r~ r~

(AIO)

and

(2) = k k b {y[(X- W - y2] +2P 2h(x-h) - y2}
O"y '3 x Y

r1 r1

(2) =k k b. {(X-h)[{x-W-y2] ph(X-h)2_ Xy2}
O"xy I 3 , + 2 .

r1 r1

A.3. Edge dislocation with the Burgers vector by
For an edge dislocation with the Burgers vector by, the Airy stress function is

X+h}+PkJ - •

rl
(All)

(AI2)

(AI3)

(AI4)

The stress components are

(AI5)

(AI6)
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(I) = k b {(X-h)[(X-h)' - y'] k (x+h)[(x+h)' - y'] 2k h (x+h)· +2x(x+h)3 -6x(x+h)y' - y'
(1-, I ,. + , ,

r1 r; r~

-fJk3X+h} (AI7)
d

(I) _ k b {(X-h)[(X-h)'+3Y'] k (x+h)[(x+h)'+3y']
(f,. - I ,. + ,-'-----'-=----'----::.......:.

r1 r;

-2k,h (x+h)·-2x(x+h)3+6x(x+h)y'-y· +fJk
3

X+h} (AI8)

r~ d

and

(I) = k b {Y[(X-h)' - y'] +k y[(x+h)' - y'] 4k h 3(x+h)' - y' -fJk 2::.}
tIxy I Y 2 2 xy 3 ,

r~ r; r! ri

(') = k k b {(X-h)[(X-h)' - y'] fJx(x-h)' -hY'}
(f. I 3 ,. +2

r1 r1

(1;.') = k ,k 3
b,.{(X-h)[(X-h)' +3y'] _2fJ h(X-h)' -XY'}

r1 r1

(1~;) = k ,k3b,.{Y[(X-h)'-y'] +2fJyX'-h'}.
r1 r1

APPENDIX B

(AI9)

(A20)

(A21)

(A22)

This appendix gives expressions for the stress components in a bimaterial due to three types of dislocation
arrays parallel to bimaterial interface. The expressions are obtained by appropriate summations of the stress fields
due to individual dislocations, listed in Appendix A. The following non-dimensional variables are employed:
~ = xlp, 1/ = yip, ho = hlp and 8 = 2n(~-ho), cp = 2n(~+ho), y, = 2n1/. The abbreviations: A = chcp-cosy,.
B = chcpcosy,-I. C = ch8-cosy, and D = ch 8cosy,-1 are also used.

B.1. Screw dislocation array

( I) JLlb,. (I I)
(f = - -sm'" - -k.-'-' 2p C A

(I) = JLlb,(Sh8 -k ShCP)
(1,,. 2p C • A •

and

(') = _ JL,b, (I +k ) sin y,
(1,-, 2p • C

(') _ JL,b, sh 8
(1,,. - 2p (I +k.) C .

B.2. Edge dislocation array with the Burgers vector b,

and

(BI)

(B2)

(B3)

(B4)

(B5)

(B6)

(B7)
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".~2) = _ nk,k)bxsinljl [(.9sh.9+C)+Pq>sh.9]
C2p
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(B8)

(B9)

(BIO)
(2) nk, k)bx

"'xy =--[D.9-P(Csh.9-Dq»].
C2p

In eqns (B5)-(BIO), the following abbreviations were used: X, = (AIC)2(.9sh.9+C), Y, = (AIC)2(.9sh.9-C),
TJ = (AIC)2D.9,

8hon2~ .
T2 = B.9+ -A-shq>(B- sm 2 t/J),

(Bl1)

(BI2)

(B13)

B.3. Edge dislocation array with the Burgers vector by

(') nk,by k
"'x =--(X, + 2X2 +pk)X))

A2p

and

0'~2) = 1tk,k)by [(2Csh.9-D.9)+P(Csh.9-Dq»]
. C 2p

(BI4)

(BI5)

(BI6)

(BI7)

(BI8)

(BI9)".~;) = nk,k)bysinljl [(8sh.9-C) +Pq> sh.9].
C 2p

In expressions (BI4)-(BI9), the following abbreviations were used: X, = (AIC)2D.9, Y, = (AIC)2(2Csh.9-D.9),
T J =(AIC)2(.9sh.9-C),

(B20)

(B21)

(B22)

B.4. Summation procedure
The two basic sums utilized in the summation procedure for the stresses due to considered periodic dislocation

arrays are

(B23)

and
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(B24)'" I/-n 1tL = -sint/t.
.~_"'z2+(I/_n)2 A

The following fonnulas are also used, which can be derived from eqn (B23) and (B24) by appropriate differ­
entiation:

(B25)

(B26)

and

'" I/-n 2715
L = --sint/t[A sh<p+<p(sh2 <p+B»).

.~ -'" [Z2 + (I/-n)2)' A'<p'

The abbreviations: <p = 21tz, t/t = 2711/, A = ch <p - cos t/t and B = ch <p cos t/t - I were conveniently used.

APPENDIX C

(B27)

(B28)

When using a divergence theorem to calculate the elastic strain energy for a dislocation in an infinite
bimaterial, or in a semi-infinite homogeneous body, the individual energy contributions from the cut, remote
contour and core surface depend on a selected cut surface over which displacement discontinuity is imposed.
However, the total strain energy is independent of a selected cut, since neither stress nor strain depends on such a
selection. For dislocations in a homogeneous medium, this was discussed by Bullough and Foreman (1964), and
Gavazza and Barnett (1975). The energy calculated from eqn (3), which implies displacement discontinuity along
the horizontal cut, is given by eqn (4). However, if displacement discontinuity is imposed along the vertical cut,
so that

(CI)

the strain energy becomes

(C2)

Therefore, the bracketed tenns in eqns (4) and (C2) differ by k2• The reason for this difference can be readily
understood by considering horizontal equilibrium of a large block of material (I), shown in Fig. Ct, i.e.

y

0' (h,y)
x

x

h p -

0' (R,y)
x

O'xJx,O)

Fig. CI. A large square block of material (I) with excluded dislocation core segment of radius p.
Indicated are the stress components that contribute to the balance of horizontal forces, leading to

eqn (C4). Dislocation is at a distance h from the bimaterial interface along the y axis.
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(a)

h

<1 (h,y)
x

y
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-
p

x

<1JX,0)

Fig. C2. (a) A semi-infinite strip with an excluded dislocation core segment of radius p. Dislocation
is at a distance h from the free surface along the y axis. Indicated are the stress components that
contribute to balance of the horizontal forces. (b) A quasi-triangular segment ofa semi-infinite strip

from (a).

i
R

iR f.R i
R

f."I'O'~')(h,y)dy+ O'~V(x,O)dx = O'~')(R,y)dy+ O'~l.'(x,R)dx+ (O'pIJ sinO-up cosO)pdO. (C3)
" h+p 0 h 0

For a sufficiently small core radius (p « h), the dislocation core can be replaced with a cylindrical hole whose
surface is subjected to tractions of an isolated dislocation in an infinite homogeneous medium, which are
up = -k,b. sin O(p and O'pe = k,bxcosO(p. Hence, by using eqns (A9) and (All) for O'~I)(R,y) and O'~V(x,R), the
integration gives

(R O'~')(h,y)dy+ (R (1~~)(x,O)dx = -k,k,b,.
Jh J,,+p

(C4)

Thus, the energy difference k,k2b;(2. If two materials are identical (k2 = 0), the difference is equal to zero, and the
respective energy contributions do not depend on a selected cut surface along which displacement discontinuity
is imposed. if dislocation is near the free surface of a semi-infinite homogeneous body (k2 = -I), the difference
in cut contributions is k,b;(2. This can be obtained by an independent analysis, considering horizontal equilibrium
of a semi-infinite strip near the free surface, with the excluded dislocation core segment [Fig. C2(a)]. The result is
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(CS)

which is equal and opposite to the resulting horizontal force of the surface tractions over the considered core
segment. More generally, from horizontal equilibrium of an isolated quasi-triangular region shown in Fig. C2(b),
it follows that

f
h=O [h-P I
P (u,"cos8+u,sin8)ds- Jo uxy(x,O)dx = ik,b,(I- cos 28), (C6)

which is equal and opposite to the resulting horizontal force over the core segment of arc-length 8. Therefore, the
energy contributions calculated from the integrals along the horizontal cut and the cut inclined at an angle 8 differ
by k,b;(I- cos 28)/4. Analogous conclusions apply for a dislocation with the Burgers vector parallel or arbitrarily
inclined to the interface or the free surface. However, the total elastic strain energy E is independent of the cut
surface, because the difference in the contributions from integrals along two different cut surfaces is exactly
balanced by the difference in the contributions from the core surface. For example, the core contribution associated
with the horizontal cut for a dislocation with the Burgers vector normal to the free surface in a semi-infinite body
is Ep = k,b;(I- 2v,)/8(1- v,). Since the core contribution associated with the vertical cut is
Ep = -k,b;(3-2v,)/8(I-v,), the total strain energies are in both cases equal to

(C7)

This is why seemingly different energy expressions for a dislocation near the free surface of a semi-infinite body,
obtained by Willis et al. (1990; 1991) with the cut along the normal to the free surface, and Freund (1987; 1990)
with the cut along an inclined (glide) plane, lead to the same total strain energy.

The energy core contributions associated with displacement discontinuity imposed at an angle 0 ~ 8 ~ 2n
and the angle 8 = 0 are related through

(C8)

where

(C9)

is the net horizontal force from the tractions over the core segment of arc-length 8. The second term on the right­
hand side ofeqn (C8) is the work of this force associated with the horizontal translation of the considered segment
for amount b" imposed to change displacement discontinuity from the horizontal cut to an inclined cut at the
angle 8. Hence

(CIO)

More generally, for a dislocation with the Burgers vector {b" by}, the energy core contributions associated with
the horizontal and inclined cuts are related through

where

oF.(8) = ~k,[by sin28-b.(l- cos 28)]

Therefore, in view of eqn (10) for Ep(O), eqn (Cll) gives

If bx = bcos3 and by = bsin 3, eqn (CI4) can be written as

(Cll)

(CI2)

(CI3)

(CI4)

(CIS)
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APPENDIX D

The strain energy expression derived in Section 3.2 can be obtained by an alternative procedure which does
not require the use of the shear stress expression (24). Indeed, since (Ix, is the negative mixed derivative of the Airy
stress function with respect to x and y coordinates, by superimposing the contributions from alI dislocations in
the wall, one has

where, from eqn (A7),

i
R

00 [aell") aell") ]
(I~:.l(x,O)dx = L -a-(h+p, -np)- -a-(R, -np) ,

h+p "~-OO Y Y
(DI)

(02)

rR

(I~~)(x,O)dx = k1b{ln s~cpo +PocothPo+k2(cpocothCPo+ ~)+k3[P(Ro+ ~O)-ln(2shCPo)J},
Jh+p s Po 2 sh2 CPo

(03)

employing the same notation as in the body of the paper. This leads to eqn (30) of Section 3.2. In the procedure,
the folIowing result is helpful

00 Z2 + n2 sh ItZ sh ItWLIn-- = In-- -In--,
.~ I w2 +n2 ItZ ItW

(D4)

which can be derived by using the representation of the hyperbolic sine function in the form of an infinite product

00 ( Z2)shz=z IT 1+--.
n= 1 n2n2

(D5)


